3,3-dimethyl-octane from Physalis peruviana as promising anti-DENV via ADMET prediction of pkCSM open webserver
Abstract
Dengue is caused by the dengue virus (DENV) and being prevalent in 100 tropical and subtropical countries including Indonesia. This disease is spread by Aedes mosquitoes. There is currently no clinically authorized medicine to treat the dengue fever. Physalis peruviana has ethnomedicine application and noted for its antioxidant activities. This study purpose to investigate the pharmacokinetics or ADMET of anti-DENV from leaf parts of P. peruviana. The phytoconstituents data were gathered from multiple sources. The drug property and ADMET prediction were assessed using pkCSM. Following online screening, 3,3-dimethyl-octane functioned as predictive anti-DENV therapeutic candidate. Further dry and wet lab studies are needed to validate this finding.
Downloads
References
Mitra A, Mawson A. Neglected tropical diseases: epidemiology and global burden. Trop Med Infect Dis. 2017;2(3):36. doi:10.3390/tropicalmed2030036
Lee M, Wu Y, Poh C. Molecular mechanisms of antiviral agents against dengue virus. Viruses. 2023;15(3):705. doi:https://doi.org/10.3390/v15030705
World Health Organization. Dengue - Global situation. World Health Organization. Published 2023. Accessed May 7, 2024. https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498
Bhatt S, Gething P, Brady O, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-507. doi:10.1038/nature12060
Low J, Sung C, Wijaya L, et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis. 2014;14(8):706-715. doi:https://doi.org/10.1016/S1473-3099(14)70730-3
Tricou V, Minh N, Van T, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. 2012;6(6):e785. doi:10.1371/annotation/8683caec-b309-46d7-bc47-dc9cc27108e4
Whitehorn J, Nguyen C, Khanh L, et al. Lovastatin for the treatment of adult patients with dengue: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2015;62:468-476. doi:https://doi.org/10.1093/cid/civ949
Kasali F, Tusiimire J, Kadima J, Tolo C, Weisheit A, Agaba A. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J. 2021;2021:5212348. doi:10.1155/2021/5212348
Zhang W-N, Tong W-Y. Chemical constituents and biological activities of plants from the Genus Physalis. Chem Biodivers. 2016;13(1):48-65. doi:10.1002/cbdv.201400435
Singh N, Singh S, Maurya P, et al. An updated review on Physalis peruviana fruit: cultivational, nutraceutical and pharmaceutical aspects. Indian J Nat Prod Resour. 2019;10(2):97-110.
Mazova N, Popova V, Stoyanova A. Phytochemical composition and biological activity of Physalis spp.: a mini-review. Food Sci Appl Biotechnol. 2020;3(1):56-70.
Yeni, Supandi, Merdekawati F. In silico toxicity prediction of 1-phenyl-1-(quinazolin-4-yl) ethanol compounds by using Toxtree, pkCSM and preADMET. Pharmaciana. 2018;8(2):205-216. doi: 10.12928/pharmaciana.v8i2.9508
Yeni Y, Rachmania RA. The prediction of pharmacokinetic properties of compounds in Hemigraphis alternata (Burm.F.) T. Ander leaves using pkCSM. Indones J Chem. 2022;22(4):1081-1089. doi:10.22146/ijc.73117
Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066-4072. doi:10.1021/acs.jmedchem.5b00104
Nafisah W, Fatchiyah, Widyananda M, et al. Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor if PD-L1/PD-1 interaction: an in silico study. Agric Nat Resour. 2022;56(751-760). doi:10.34044/j.anres.2022.56.4.09
Tripathy D, Nayak B, Mohanty B, Mishra B. Solid dispersion: a technology for improving aqueous solubility of drug. J Pharm Adv Res. 2019;2(7):577-586.
Henriques J, Falé P, Pacheco R, Florêncio M, Serralheiro M. Phenolic compounds from Actinidia deliciosa leaves: Caco-2 permeability, enzyme inhibitory activity and cell protein profile studies. J King Saud Univ - Sci. 2018;30(4):513-518. doi:https://doi.org/10.1016/j.jksus.2017.07.007
Pecoraro B, Tutone M, Hoffman E, Hutter V, Almerico A, Traynor M. Predicting skin permeability by means of computational approaches: reliability and caveats in pharmaceutical studies. J Chem Inf Model. 2019;59(5):159-171. doi:10.1021/acs.jcim.8b00934
Ju F, Ran Y, Zhu L, et al. Increased BBB permeability enhances activation of microglia and exacerbates loss of dendritic spines after transient global cerebral ischemia. Front Cell Neurosci. 2018;12:236. doi:10.3389/fncel.2018.00236
Bhosle V, Altit G, Autmizguine J, S Chemtob. Basic pharmacologic principles. In: Polin R, Abman S, Rotwich D, Benitz W, Fox W, eds. Fetal and Neonatal Physiology. 5th ed. Elsevier Health Science; 2016:187-201. doi:10.1016/b978-0-323-35214-7.00018-4
Copyright (c) 2023 Muhammad Evy Prastiyanto, Rofiatun Solekha, Laila Ainur Rohmah, Yuanita Rachmawati, Nur Sofiatul Aini

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.