Relationship of observation depth and time against Perna viridis spawn in coastal waters of Waiheru Village, Inner Ambon Bay
Abstract
The adhesion of green mussel spit is highly correlated with depth. This study aims to establish the correlation between the depth and duration of observation with the abundance of green mussel spat (Perna viridis) in the coastal waters of Waiheru Village, located in Inner Ambon Bay. This study was undertaken utilising three floating net cages (KJA) possessed by local fishermen. The KJA utilised in this investigation had dimensions of 2.0 x 2.5 metres. Each KJA is equipped with 4 threads of hanger rope, resulting in a total of 12 hangers. Each rope hanger is positioned at specific depths, specifically at depths of 3, 6, and 9 metres. The net is 40 cm by 40 cm. Observations were conducted on days 2, 4, 6, 8, 10, 12, and 14 after the nets were strung. The findings indicated that the depth and duration of observation significantly influenced the quantity of green mussel spat. Specifically, more spat was observed compared to other days, suggesting a stronger attachment at that depth and observation period. Nevertheless, on the 10th day of observation, there was a surge in the quantity of green mussel spit.
Downloads
References
2. Micklem JM, Griffiths CL, Ntuli N, Mwale M. The invasive Asian green mussel Perna viridis in South Africa: all that is green is not viridis. African Journal of Marine Science. 2016 Aug 19;38(2):207-15. https://doi.org/10.2989/1814232X.2016.1180323
3. King M. Fisheries biology, assessment and management. John Wiley & Sons; 2013 Apr 16.
4. Buck BH, Ebeling MW, Michler-Cieluch T. Mussel cultivation as a co-use in offshore wind farms: potential and economic feasibility. Aquaculture Economics & Management. 2010 Nov 30;14(4):255-81. https://doi.org/10.1080/13657305.2010.526018
5. McFarland K, Baker S, Baker P, Rybovich M, Volety AK. Temperature, salinity, and aerial exposure tolerance of the invasive mussel, Perna viridis, in estuarine habitats: Implications for spread and competition with native oysters, Crassostrea virginica. Estuaries and Coasts. 2015 Sep;38:1619-28. https://doi.org/10.1007/s12237-014-9903-5
6. van den Bogaart LA, Schotanus J, Capelle JJ, Bouma TJ. Comparing traditional vs. biodegradable seed mussel collectors (SMCs) for seed settlement, seed density, and seed growth: effect of deployment depth and location. Aquacultural engineering. 2023 Aug 1;102:102344. https://doi.org/10.1016/j.aquaeng.2023.102344
7. Jones JW, Mair RA, Neves RJ. Factors affecting survival and growth of juvenile freshwater mussels cultured in recirculating aquaculture systems. North American Journal of Aquaculture. 2005 Jul 1;67(3):210-20. https://doi.org/10.1577/A04-055.1
8. Wisnawa IG. Studi Pemetaan Kesesuaian Budidaya Kerang Hijau (Perna Viridis) Menggunakan Data Citra Satelit dan SIG di Perairan Laut Tejakula. JST (Jurnal Sains dan Teknologi). 2013;2(2). https://doi.org/10.23887/jst-undiksha.v2i2.2902
9. Gosling E. Marine bivalve molluscs. John Wiley & Sons; 2015 Apr 27. https://doi.org/10.1002/9781119045212
10. Andriyani S. Studi Kualitas Air dan Struktur Komunitas Plankton terhadap Laju Pertumbuhan Kerang Hijau (Perna viridis) di Desa Banyuurip Ujungpangkah Gresik.[Skripsi]. UIN Sunan Ampel Surabaya. 2019.
11. Mann KH. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography. 1988 Jul;33(4part2):910-30. https://doi.org/10.4319/lo.1988.33.4part2.0910
12. Rahman MA, Henderson S, Miller-Ezzy PA, Li XX, Qin JG. Analysis of the seasonal impact of three marine bivalves on seston particles in water column. Journal of Experimental Marine Biology and Ecology. 2020 Jan 1;522:151251. https://doi.org/10.1016/j.jembe.2019.151251
13. Vanderploeg HA. Zooplankton particle selection and feeding mechanisms. InThe Biology of Particles in Aquatic Systems, Second Edition 2020 Oct 28 (pp. 205-234). CRC Press. https://doi.org/10.1201/9781003070146-9
14. Sagita A, Kurnia R, Sulistiono S. Penilaian Kondisi Ekologi Perairan Untuk Pengembangan Budidaya Kerang Hijau (Perna viridis L.) Di Pesisir Kuala Langsa, Aceh. Bawal Widya Riset Perikanan Tangkap. 2018 Apr 4;10(1):57-67. https://doi.org/10.15578/bawal.10.1.2018.57-67
15. Supono S, Dunphy B, Jeffs A. Retention of green-lipped mussel spat: the roles of body size and nutritional condition. Aquaculture. 2020 Apr 15;520:735017. https://doi.org/10.1016/j.aquaculture.2020.735017
16. Helm MM, Bourne N, Lovatelli A. Hatchery culture of bivalves: a practical manual. 2004.
17. Riisgard HU. Inaccurate bivalve clearance rate measurements: a reply. Marine Ecology-Progress Series. 2001 Jan 1;221:307-9. https://doi.org/10.3354/meps221307
18. Zang C, Huang S, Wu M, Du S, Scholz M, Gao F, Lin C, Guo Y, Dong Y. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, & Soil Pollution. 2011 Jul;219:157-74. https://doi.org/10.1007/s11270-010-0695-3
19. Maslukah L, Setiawan RY, Nurdin N, Helmi M, Widiaratih R. Phytoplankton chlorophyll-a biomass and the relationship with water quality in Barrang Caddi, Spermonde, Indonesia. Ecological Engineering & Environmental Technology. 2022;23. https://doi.org/10.12912/27197050/143064
20. Hamzah AS, Hamzah M, Hamzah MS. Perkembangan dan kelangsungan hidup larva kerang mutiara (Pinctada maxima) pada kondisi suhu yang berbeda. Media Akuatika. 2016;1(3):152-60.
21. Wang Y, Hu M, Wong WH, Shin PK, Cheung SG. The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis. Marine pollution bulletin. 2011 Jan 1;63(5-12):255-61. https://doi.org/10.1016/j.marpolbul.2011.02.004
22. Fauziah AR. Korelasi ukuran kerang darah (Anadara Granosa) dengan konsentrasi logam berat merkuri (Hg) di Muara Sungai Ketingan, Sidoarjo, Jawa Timur (Doctoral dissertation, UNIVERSITAS AIRLANGGA).
23. Nurjanah EY. Laju Filtrasi Kerang hijau (Perna viridis L. 1758) terhadap Fitoplankton Nannochloropsis sp. pada Kondisi Terang dan Gelap. Skripsi. FPIK. IPB. Bogor: 74.
24. Cossins A. Temperature biology of animals. Springer Science & Business Media; 2012 Dec 6.
25. Wedemeyer GA, Wedemeyer GA. Basic physiological functions. Physiology of fish in intensive culture systems. 1996:10-59. https://doi.org/10.1007/978-1-4615-6011-1_2
Copyright (c) 2024 Mujahiddin Permata Roman Rettob, La Eddy, Sanita Suriani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.