Utilization sugarcane waste (Saccarhum officinarum L.) as a bioetanol basic material through a bioprocess engineering approach based microbes
Abstract
Sugarcane (Saccharum officinarum L.) is a plant that is able to produce a lot of sugar content in its stem organs. The amount of sugar production from sugar cane, of course, produces and leaves bagasse waste. A number of studies have shown that bagasse waste still contains a lot of important materials, one of which contains lignocellulose substrates that have the potential to be converted into bioethanol raw materials. The purpose of this study is to determine, see and assess the production of bioethanol produced by utilizing sugarcane waste as raw material through a microbial-based bioprocess engineering approach. This research is an experimental type with the treatment of free cells and immobilized cells in bioethanol production by utilizing sugarcane waste as raw material with the stages of processing waste into flour, dried, hydrolyzed, and analyzed sugar content before ethanol production test. Based on the results of research on ethanol testing using free cells, the highest alcohol content was obtained at a concentration of 3% and 4%. For the test of ethanol content using immobilized cells, the highest ethanol content was obtained at a concentration of 4%.
Downloads
References
Perwitasari H, Mulyo J, Sugiyarto, et al. A Comprehensive review of sugarcane. Agro Ekonomi.
;32(1):1-11. doi:10.22146/ae.61051.
Wikana I, Lukas L. Tinjauan kuat lentur panel menggunakan bahan ampas tebu dan sikacim bonding
adhesive. Majalah Ilmiah Ukrim. 2008;1:1-18.
Kamboj A, Sadh P, Yadav B, et al. Unravelling the potential of sugarcane bagasse: An eco-friendly
and inexpensive agro-industrial waste for the production of valuable products using pretreatment
processes for sustainable bio-economy. Journal of Environental and Chemical Engineering.
;12(6):114461. doi:10.1016/j.jece.2024.114461.
Sudiyani Y, Heru R, Alawiyah S. Pemanfaatan biomassa limbah lignoselulosa untuk bioetanol
sebagai sumber energi baru terbarukan. Ecolab. 2010;4(1):40-47. doi:10.20886/jklh.2010.4.1.40-47.
Rachmadiyanti I. Perbandingan aktivitas antibiotika sel amobil dengan matrik k-karragenann dan
sel bebas Streptomyces sp-1 hasil penggunaan ulang. Undergraduate Thesis. Faculty of Pharmacy,
Airlangga University; 2009.
Febriana I. Effect of bread yeast (Saccharomyces cereviseae) Concentration and fermentation time in
the manufacture of bioethanol using banana peel. Jurnal Distilasi. 2018;3(1):1-7.
doi:10.32502/jd.v3i1.1869.
Zentou H, Abidin Z, Zouanti M, et al. Effect of operating conditions on molasses fermentation for
bioethanol production. International Journal of Applied Engineering Research. 2017;12(15):5202-5506
Narun, Jalaluddin, Mahfuddhak. Pengaruh jumlah ragi dan waktu fermentasi terhadap kadar
bioetanol yang dihasilkan dari fermentasi kulit pepaya. Jurnal Teknologi Kimia Unimal. 2017;4(2):1-10.
doi:10.29103/jtku.v4i2.68.
Parapouli M, Vasileiadis A, Afendra A, et al. Saccharomyces cerevisiae and its industrial applications.
AIMS Microbiol. 2020;6(1):1-31. doi:10.3934/microbiol.2020001.
Jamal L, Sendide K, Ettayebi K, et al. . Physiological difference during ethanol fermentation between
calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiology
Letter. 2001;204(2):375-379. doi:10.1016/S0378-1097(01)00430-X.
Duarte J, Rodrigues J, Moran P, et al. Effect of immobilized cells in calcium alginate beads in
alcoholic fermentation. AMB Express. 2013;3(1):31. doi:0.1186/2191-0855-3-31.
Rusu L, Grigoraș C-G, Simion A-I, et al. Application of Saccharomyces cerevisiae/calcium alginate
composite beads for cephalexin antibiotic biosorption from aqueous solutions. Materials (Basel).
;14(6):4728. doi:10.3390/ma14164728.
Allain E. Cell-free ethanol production: the future of fuel ethanol? Journal of Chemical Technology and
Biotechnology. 2007;82(2):117-120. doi:10.1002/jctb.1649.
Santos E, Rostro-Alanís M, Parra-Saldívar R, et al. A novel method for bioethanol production using
immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane.
Bioresource Technology. 2018;247:165-173. doi:10.1016/j.biortech.2017.09.091.
Anwar F, Subagyo R. Pembuatan bioetanol berbahan baku ampas tebu dan kulit pisang dengan
variasi massa ragi. JTAM Rotary. 2020;2(1):123-136. doi:10.20527/jtam_rotary.v2i1.2009.
Yuda I, Wijaya I, Suwariani N. Studi pengaruh pH awal media dan konsentrasi substrat pada proses
fermentasi produksi bioetanol dari hidrolisat tepung biji kluwih (Actinocarpus communis) dengan
menggunakan Saccharomyces cerevisiae. Jurnal Rekayasa dan Manajemen Agroindustri. 2018;6(2):115-124.
doi:10.24843/JRMA.2018.v06.i02.p03.
Buckle K, Edward R, Fleet G, Wotton M. Course Manual in Food Science. Watson Ferguson and Co;
Agbogbo F, Wenger K. Production of ethanol from corn stover hemicellulose hydrolyzate using
Pichia stipitis. Journal of Industrial Microbiology and Biotechnology. 2007;34(11):723–727.
doi:10.1007/s10295-007-0247-z.
Wahyudi. Produksi Alkohol Oleh Saccharomyces Ellipsoideus Dengan Tetes Tebu (Molase) Sebagai Bahan
Baku Utama: Bogor. Agroindustrial Technology; 1997.
Kultsum U. Pengaruh variasi nira tebu (Saccharum officinarum) dari beberapa varietas tebu dengan
penambahan sumber nitrogen (N) dari tepung kedelai hitam (Glycine soja) sebagai substrat terhadap
efisiensi fermentasi etanol. Undergraduate Thesis. Departmenet of Chemistry, Faculty of Science and
Technology, Universitas Islam Negeri Maulana Malik Ibrahim; 2009
Copyright (c) 2024 Danial Mohamad, Syahrul Lanti, Annisa Dwiyani, Citra Leonita Matalauni, Adam Suduri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.