Molecular Mechanisms of Hepatitis C Virus (HCV) Triggering Normal Cell Transformation into Cancer: A Mini Review
Abstract
Hepatitis C virus (HCV) infection has become a serious concern because it can trigger the severity of complications leading to hepatocellular carcinoma (HCC). HCV is a virus with single-stranded RNA (ssRNA) type genetic material, with virions composed of structural proteins such as glycoprotein, envelope, and core, then HCV also has nonstructural proteins such as NS3, NS4, NS4B, NS5A, NS5B. The development of HCV infection therapy has been carried out through direct-acting antiviral agents (DAAs) with the hope of achieving a reduction in mortality and HCC risk. However, these strategies cannot fully reduce the risk of HCC in patients who have recovered from HCV infection. This review briefly reviews several factors from the virus and host to trigger cellular transformation of hepatocytes into HCC. HCV infection can trigger the transformation of hepatocytes into cancer in the case of HCC influenced by two factors consisting of pro-oncogenic and growth factors. Pro-oncogenic of HCV initiates HCC through the release of ROS that triggers genetic mutations and upregulation of proliferation in hepatocytes, it allows internal cell factors to also work in the process of transformation into cancer such as increased growth factor activity for antiapoptotic response, survival, and proliferation to trigger increased severity of HCC.
Downloads
References
Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int J Mol Sci. 2020;21(9):3057.
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604. doi:10.1038/s41575-019-0186-y
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492
Kamboj S, Rajput A, Rastogi A, Thakur A, Kumar M. Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches. Comput Struct Biotechnol J. 2022;20:3422-3438. doi:10.1016/j.csbj.2022.06.060
Jiang Z, Cheng L, Wu Z, et al. Transforming primary human hepatocytes into hepatocellular carcinoma with genetically defined factors. EMBO Rep. 2022;23(6):e54275. doi:10.15252/embr.202154275
Montalbano M, Rastellini C, Wang X, et al. Transformation of primary human hepatocytes in hepatocellular carcinoma. Int J Oncol. 2016;48(3):1205-1217. doi:10.3892/ijo.2015.3312
D'Ambrosio R, Rizzardini G, Puoti M, et al. Implementation of HCV screening in the 1969-1989 birth-cohort undergoing COVID-19 vaccination. Liver Int. 2022;42(5):1012-1016. doi:10.1111/liv.15216
Sidorkiewicz M. Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites. 2021;11(5):273. doi:10.3390/metabo11050273
Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J Clin Transl Hepatol. 2018;6(1):79-84. doi:10.14218/JCTH.2017.00067
de Oliveria Andrade LJ, D'Oliveira A, Melo RC, De Souza EC, Costa Silva CA, Paraná R. Association between hepatitis C and hepatocellular carcinoma. J Glob Infect Dis. 2009;1(1):33-37. doi:10.4103/0974-777X.52979
Meringer H, Shibolet O, Deutsch L. Hepatocellular carcinoma in the post-hepatitis C virus era: Should we change the paradigm?. World J Gastroenterol. 2019;25(29):3929-3940. doi:10.3748/wjg.v25.i29.3929
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol. 2022;30(4):364-378. doi:10.1016/j.tim.2021.08.005
Syed GH, Khan M, Yang S, Siddiqui A. Hepatitis C Virus Lipoviroparticles Assemble in the Endoplasmic Reticulum (ER) and Bud off from the ER to the Golgi Compartment in COPII Vesicles. J Virol. 2017;91(15):e00499-17. doi:10.1128/JVI.00499-1
Akuta N, Suzuki F, Hirakawa M, et al. Amino acid substitutions in hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by antiviral therapy. J Med Virol. 2011;83(6):1016-1022. doi:10.1002/jmv.22094
Sakata K, Hara M, Terada T, et al. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor. Sci Rep. 2013;3:3243. doi:10.1038/srep03243
Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses. 2013;5(2):439-469. doi:10.3390/v5020439
Suhail M, Sohrab SS, Kamal MA, Azhar EI. Role of hepatitis c virus in hepatocellular carcinoma and neurological disorders: an overview. Front Oncol. 2022;12:913231. doi:10.3389/fonc.2022.913231
Sung PS, Shin EC. Interferon Response in Hepatitis C Virus-Infected Hepatocytes: Issues to Consider in the Era of Direct-Acting Antivirals. Int J Mol Sci. 2020;21(7):2583. doi:10.3390/ijms21072583
Huang M, Jiang JD, Peng Z. Recent advances in the anti-HCV mechanisms of interferon. Acta Pharm Sin B. 2014;4(4):241-247. doi:10.1016/j.apsb.2014.06.010
Diao J, Pantua H, Ngu H, et al. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol. 2012;86(20):10935-10949. doi:10.1128/JVI.00750-12
Abdeen Radwan A, Abd-Elazeem Hefney NE, Mohammed Kholef EF, Elebidi A, Mahmoud H. Transforming Growth Factor Β as a Marker of Hepatocellular Carcinoma in Patients with Chronic Hepatitis C Virus Infection. Rep Biochem Mol Biol. 2023;11(4):702-709. doi:10.52547/rbmb.11.4.702
Roca Suarez AA, Baumert TF, Lupberger J. Beyond viral dependence: The pathological consequences of HCV-induced EGF signaling. J Hepatol. 2018;69(3):564-566. doi:10.1016/j.jhep.2018.05.033
Lupberger J, Zeisel MB, Xiao F, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17(5):589-595. doi:10.1038/nm.2341
Yoshida T, Hanada T, Tokuhisa T, et al. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med. 2002;196(5):641-653. doi:10.1084/jem.20012127
Song Y, Yang X, Shen Y, Wang Y, Xia X, Zhang AM. STAT3 signaling pathway plays importantly genetic and functional roles in HCV infection. Mol Genet Genomic Med. 2019;7(8):e821. doi:10.1002/mgg3.821
Zou LL, Li JR, Li H, et al. TGF-β isoforms inhibit hepatitis C virus propagation in transforming growth factor beta/SMAD protein signalling pathway dependent and independent manners. J Cell Mol Med. 2021;25(7):3498-3510. doi:10.1111/jcmm.16432
Abdeen Radwan A, Abd-Elazeem Hefney NE, Mohammed Kholef EF, Elebidi A, Mahmoud H. Transforming Growth Factor Β as a Marker of Hepatocellular Carcinoma in Patients with Chronic Hepatitis C Virus Infection. Rep Biochem Mol Biol. 2023;11(4):702-709. doi:10.52547/rbmb.11.4.702
Mukozu T, Nagai H, Matsui D, Kanekawa T, Sumino Y. Serum VEGF as a tumor marker in patients with HCV-related liver cirrhosis and hepatocellular carcinoma. Anticancer Res. 2013;33(3):1013-1021.
Atta MM, Atta HM, Gad MA, et al. Clinical significance of vascular endothelial growth factor in hepatitis C related hepatocellular carcinoma in Egyptian patients. J Hepatocell Carcinoma. 2016;3:19-24. doi:10.2147/JHC.S86708
Mee CJ, Farquhar MJ, Harris HJ, et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology. 2010;138(3):1134-1142. doi:10.1053/j.gastro.2009.11.047
Copyright (c) 2023 The Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.