DNA damage, inflammation, and cellular senescence investigation in SARS-CoV-2 infection: A short review
Abstract
SARS-2 infection is predicted to trigger DNA damage due to excessive inflammatory responses from the immune system such as cytokine storms. The cytokine storm leads to an increase in oxidative stress in cells, possibly triggering senescence through activation of the DNA damage response (DDR) signaling pathway. Alterations in the DDR pathway that induce cellular senescence have been identified due to the regulation of viral proteins that lead to impaired DNA repair. However, previous studies have not examined the relationship between DNA damage, inflammation, and cellular senescence. In this short review, we will discuss with a simple perspective why SARS-CoV-2 infection can accelerate the cellular senescence process and its relationship with the inflammatory response.
Downloads
References
Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res. 2020; 188: 109819. DOI: 10.1016/j.envres.2020.109819.
Maurin C, He Z, Mentek M, Verhoeven P, Pillet S, Bourlet T, Rogues F, Pugniet JL, Peyragrosse T, Barallon M, Perrache C, Aouimeur I, Acquart S, Ninotta S, Baud'huin M, Vabres B, Poinard S, Gain P, Thuret G. Exploration of the ocular surface infection by SARS-CoV-2 and implications for corneal donation: An ex vivo study. PLoS Med. 2022; 19(3): e1003922. DOI: 10.1371/journal.pmed.1003922.
Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö, Erbaş G, Aygencel G, Guzel Tunccan O, Öztürk MA, Dizbay M, Tufan A. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. 2021; 137: 155302. DOI: 10.1016/j.cyto.2020.155302.
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol. 2020; 146(3): 518-534.e1. DOI: 10.1016/j.jaci.2020.07.001.
Attiq A, Yao LJ, Afzal S, Khan MA. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int Immunopharmacol. 2021; 101(Pt B): 108255. DOI: 10.1016/j.intimp.2021.108255.
Kirsch-Volders M, Fenech M. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis. Mutat Res Rev Mutat Res. 2021; 788: 108395. DOI: 10.1016/j.mrrev.2021.
Cheng B, Pan W, Xing Y, Xiao Y, Chen J, Xu Z. Recent advances in DDR (DNA damage response) inhibitors for cancer therapy. Eur J Med Chem. 2022; 230: 114109. DOI: 10.1016/j.ejmech.2022.114109.
Victor J, Deutsch J, Whitaker A, Lamkin EN, March A, Zhou P, Botten JW, Chatterjee N. SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Biochem Biophys Res Commun. 2021; 579: 141-145. DOI: 10.1016/j.bbrc.2021.09.024.
Mekawy AS, Alaswad Z, Ibrahim AA, Mohamed AA, AlOkda A, Elserafy M. The consequences of viral infection on host DNA damage response: a focus on SARS-CoVs. J Genet Eng Biotechnol. 2022; 20(1): 104. DOI: 10.1186/s43141-022-00388-3.
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol. 2023; 23(4): 251-263. DOI: 10.1038/s41577-022-00785-2.
Dibha AF, Wahyuningsih S, Ansori ANM, Kharisma VD, Widyananda MH, Parikesit AA, Sibero MT, Probojati RT, Murtadlo AAA, Trinugroho JP, Sucipto TH, Turista DDR, Rosadi I, Ullah ME, Jakhmola V, Zainul R. Utilization of Secondary Metabolites in Algae Kappaphycus alvarezii as a Breast Cancer Drug with a Computational Method. Pharmacognosy Journal. 2022; 14(3): 536-543. DOI: 10.5530/pj.2022.14.68
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel). 2021; 13(15): 3819. DOI: 10.3390/cancers13153819.
Christmann M, Verbeek B, Roos WP, Kaina B. O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta. 2011; 1816(2): 179-90. DOI: 10.1016/j.bbcan.2011.06.002.
Aini NS, Ansori ANM, Kharisma VD, Syadzha MF, Widyananda MH, Murtadlo AA, et al. Potential Roles of Purslane (Portulaca oleracea L.) as Antimetabolic Syndrome: A Review. Pharmacognosy Journal. 2022; 14(3): 710-714. DOI: 10.5530/pj.2022.14.90
Nastasi C, Mannarino L, D'Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci. 2020; 21(20): 7504. DOI: 10.3390/ijms21207504.
Listiyani P, Kharisma VD, Ansori AN, Widyananda MH, Probojati RT, Murtadlo AA, et al. In Silico Phytochemical Compounds Screening of Allium sativum Targeting the Mpro of SARS-CoV-2. Pharmacog J. 2022; 14(3): 604-609. DOI: 10.5530/pj.2022.14.78
Nikitin PA, Luftig MA. The DNA damage response in viral-induced cellular transformation. Br J Cancer. 2012; 106(3): 429-35. DOI: 10.1038/bjc.2011.612.
Aini NS, Kharisma VD, Widyananda MH, Murtadlo AA, Probojati RT, Turista DD, et al. Bioactive Compounds from Purslane (Portulaca oleracea L.) and Star Anise (Illicium verum Hook) as SARS-CoV-2 Antiviral Agent via Dual Inhibitor Mechanism: In Silico Approach. Pharmacog J. 2022;14(4): 352-357. DOI: 10.5530/pj.2022.14.106
Kharisma VD, Ansori ANM. Construction of Epitope-Based Peptide Vaccine Against SARS-CoV-2: Immunoinformatics Study. J Pure Appl Microbiol. 2020; 14: 999-1005. DOI: 10.22207/JPAM.14.SPL1.38
Kharisma VD, Ansori ANM, Nugraha AP. Computational study of ginger (Zingiber Officinale) as E6 inhibitor in human papillomavirus type 16 (Hpv-16) infection. Biochemical and Cellular Archives. 2020; 20: 3155-3159. DOI: 10.35124/bca.2020.20.S1.3155
Ansori ANM, Kharishma VD, Muttaqin SS, Antonius Y, Parikesit AA. Genetic Variant of SARS-CoV-2 Isolates in Indonesia: Spike Glycoprotein Gene. J Pure Appl Microbiol. 2020; 14: 971-978. DOI: 10.22207/JPAM.14.SPL1.35
Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. Int J Environ Res Public Health. 2021; 18(12): 6312. DOI: 10.3390/ijerph18126312.
Turista DDR, Islamy A, Kharisma VD, Ansori ANM. Distribution of COVID-19 and Phylogenetic Tree Construction of SARS-CoV-2 in Indonesia. J Pure Appl Microbiol. 2020; 14: 1035-1042. DOI: 10.22207/JPAM.14.SPL1.42
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 2016; 38: 94-101. DOI: 10.1016/j.dnarep.2015.11.019.
Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol. 2014; 6(6): 442-57. DOI: 10.1093/jmcb/mju045.
Pánico P, Ostrosky-Wegman P, Salazar AM. The potential role of COVID-19 in the induction of DNA damage. Mutat Res Rev Mutat Res. 2022; 789: 108411. DOI: 10.1016/j.mrrev.2022.108411.
Gioia U, Tavella S, Martínez-Orellana P, Cicio G, Colliva A, Ceccon M, Cabrini M, Henriques AC, Fumagalli V, Paldino A, Presot E, Rajasekharan S, Iacomino N, Pisati F, Matti V, Sepe S, Conte MI, Barozzi S, Lavagnino Z, Carletti T, Volpe MC, Cavalcante P, Iannacone M, Rampazzo C, Bussani R, Tripodo C, Zacchigna S, Marcello A, d'Adda di Fagagna F. SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat Cell Biol. 2023; 25(4): 550-564. DOI: 10.1038/s41556-023-01096-x.
Park C, Suh Y, Cuervo AM. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun. 2015; 6: 6823. DOI: 10.1038/ncomms7823.
Lee YD, Elledge SJ. Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev. 2006; 20(3): 334-44. DOI: 10.1101/gad.1380506.
Sepe S, Rossiello F, Cancila V, Iannelli F, Matti V, Cicio G, Cabrini M, Marinelli E, Alabi BR, di Lillo A, Di Napoli A, Shay JW, Tripodo C, d'Adda di Fagagna F. DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging. EMBO Rep. 2022; 23(2): e53658. DOI: 10.15252/embr.202153658.
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel). 2021; 12(9): 1446. DOI: 10.3390/genes12091446.
Fahmi M, Kharisma VD, Ansori ANM, Ito M. Retrieval and Investigation of Data on SARS-CoV-2 and COVID-19 Using Bioinformatics Approach. Adv Exp Med Biol. 2021; 1318: 839-857. DOI: 10.1007/978-3-030-63761-3_47
Vatansever HS, Becer E. Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virol. 2020: 10.2217/fvl-2020-0168. DOI: 10.2217/fvl-2020-0168.
Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, Fu Z, Wang L, Hu G, Ma Q, Sheng S, Wang J, Hu X, Shao S. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol. 2022; 13: 1033674. DOI: 10.3389/fphar.2022.1033674.
Patra T, Meyer K, Geerling L, Isbell TS, Hoft DF, Brien J, Pinto AK, Ray RB, Ray R. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020; 16(12): e1009128. DOI: 10.1371/journal.ppat.1009128.
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021; 21(9): 548-569. DOI: 10.1038/s41577-021-00524-z.
Wu Y, Zhang M, Yuan C, Ma Z, Li W, Zhang Y, Su L, Xu J, Liu W. Progress of cGAS-STING signaling in response to SARS-CoV-2 infection. Front Immunol. 2022;13: 1010911. DOI: 10.3389/fimmu.2022.1010911.
Gudowska-Sawczuk M, Mroczko B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int J Mol Sci. 2022; 23(7): 3673. DOI: 10.3390/ijms23073673.
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020; 53: 25-32. DOI: 10.1016/j.cytogfr.2020.05.003.
Liu N, Pang X, Zhang H, Ji P. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol. 2022; 12: 814709. DOI: 10.3389/fimmu.2021.814709.
Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, Nass T, Guenova E, Schaller M, Conrad C, Goepfert C, de Leval L, Garnier CV, Berezowska S, Dubois A, Gilliet M, Ablasser A. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature. 2022; 603(7899): 145-151. DOI: 10.1038/s41586-022-04421-w.
Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb Pathog. 2021; 153: 104799. DOI: 10.1016/j.micpath.2021.104799.
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev. 2022; 63: 44-57. DOI: 10.1016/j.cytogfr.2021.11.001.
Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology (Basel). 2020; 9(12): 485. DOI: 10.3390/biology9120485.
Marquez-Exposito L, Tejedor-Santamaria L, Valentijn FA, Tejera-Muñoz A, Rayego-Mateos S, Marchant V, Rodrigues-Diez RR, Rubio-Soto I, Knoppert SN, Ortiz A, Ramos AM, Goldschmeding R, Ruiz-Ortega M. Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants (Basel). 2022; 11(2): 301. DOI: 10.3390/antiox11020301.
Copyright (c) 2023 The Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.